Potenzfunktion

Eine Potenzfunktion ist eine Funktion der Form:

 

f(x)=xn

 

mit n∈ℤ\{0} (das Bedeutet man darf alle ganzen Zahlen für n einsetzen ohne 0). Man darf die Null nicht einsetzen, da sonst immer 1 raus kommen würde, egal was man für x einsetzt, da x0=1 ist.)

Beispiele

y=x

y=x4

y=x-2

 


Graphen von Potenzfunktionen

Die Graphen von Potenzfunktionen unterscheiden sich, je nachdem, ob der Exponent gerade, ungerade, positiv oder negativ ist. Hier seht ihr alle Fälle:

 

Gerader und positiver Exponent:

z.B. f(x)=x2

Gerader und negativer Exponent:

z.B. f(x)=x-2

Ungerader und positiver Exponent:

z.B. f(x)=x3

Ungerader und negativer Exponent:

z.B. f(x)=x-3


Eine Potenzfunktion der Form:

f(x)=a·xn

 

kann verschiedene Graphen beschreiben, hier seht ihr welchen Graphen sie wann abbildet:

 

1. Gerade (n=1)

  • Ist n=1 so ist die Funktion linear und es ergibt sich eine Gerade.
  • f(x)=a·x1 =a·x

2. Parabel (n>1)

  • Ist n>1 so ergeben sich Parabeln, z.B.:  f(x)=a·x2
  • Man nennt diese dann Parabeln n-ter Ordnung. Bei unserem Beispiel wäre es also eine Parabel 2-ter Ordnung.

3. Hyperbel (n<0)

  • Ist n<0, also Minuszahlen, ergeben sich Hyperbeln.
  • Diese nennt man dann auch Hyperbeln n-ter Ordnung. Das hier wäre eine Hyperbel 3. Ordnung: f(x)=a·x-3

4. Faktor a

  • Das a bewirkt nur, dass die Funktion steiler wird, wenn das a groß ist und flacher, wenn a klein ist.

HIER geht´s zur Wurzelfunktion, die eine spezielle Form der Potenzfunktion ist.



Nullstellen der Potenzfunktion

Wie man Nullstellen berechnet findet ihr HIER

Und hier könnt ihr euch Nullstellen berechnen lassen:

Definitions- und Wertemenge

Die Definitions- und Wertemenge hängt davon ab, ob der Exponent gerade, oder ungerade ist, und ob positiv oder negativ. Hier seht ihr die jeweilige Definitions- und Wertemengen:

Gerader und positiver Exponent:

  • D=ℝ
  • W=ℝ0+

Gerader und negativer Exponent:

  • D=ℝ/{0}
  • W=ℝ+

Ungerader und positiver Exponent:

  • D=ℝ
  • W=ℝ

Ungerader und negativer Exponent:

  • D=ℝ/{0}
  • W=ℝ/{0}

Symmetrie

Die Symmetrie hängt ebenfalls davon ab, ob der Exponent positiv oder negativ ist. Eine ausführliche Erklärung zur Symmetrie findet ihr HIER.

Gerader und positiver Exponent:

  • achsensymmetrisch (zur y-Achse)

Gerader und negativer Exponent:

  • achsensymmetrisch (zur y-Achse)

Ungerader und positiver Exponent:

  • punktsymmetrisch (zum Koordinatenursprung)

Ungerader und negativer Exponent:

  • punktsymmetrisch (zum Koordinatenursprung)

Grenzwerte

Die Grenzwerte einer Potenzfunktion sind ebenfalls von ihrem Exponent abhängig:

Gerader und positiver Exponent:

  • limx→∞f(x)=∞ 

  • limx→-∞f(x)=∞

  • limx→+0f(x)=0

  • limx→-0f(x)=0

Gerader und negativer Exponent:

  • limx→∞f(x)=0

  • limx→-∞f(x)=0

  • limx→+0f(x)=∞

  • limx→-0f(x)=∞

Ungerader und positiver Exponent:

  • limx→∞f(x)=∞

  • limx→-∞f(x)=-∞

  • limx→+0f(x)=0

  • limx→-0f(x)=0

Ungerader und negativer Exponent:

  • limx→∞f(x)=0

  • limx→-∞f(x)=0

  • limx→+0f(x)=∞

  • limx→-0f(x)=-∞


Potenzfunktion zeichnen lassen

Hier könnt ihr mal etwas herumprobieren und euch paar Potenzfunktionen zeichnen lassen (falls nicht angezeigt, könnte es an AdBlock liegen):

Monotonie

Die Monotonie hängt, wie so vieles, auch vom Exponenten ab, hier alle Fälle:

Gerader und positiver Exponent:

  • strengmonoton fallend bis 0
  • strengmonoton steigend ab 0

Gerader und negativer Exponent:

  • strengmonoton steigend (komplett)

Ungerader und positiver Exponent:

  • strengmonoton steigend bis 0
  • strengmonoton fallend ab 0

Ungerader und negativer Exponent:

  • strengmonoton fallend (komplett)

Empfohlenes Video zum Thema

Unser Blog


Tipps gegen Prüfungsangst

Viele kennen das, vor einer Prüfung geht die Angst rum, man wird unruhig und es geht einem nicht gut. Die Prüfungsangst schlägt zu. Wir möchten euch paar Tipps geben diese Angst etwas zu verringern und bessere Ergebnisse zu erzielen. 

mehr lesen 0 Kommentare