Cauchy-Folge

Eine Cauchy-Folge (bzw. Cauchyfolge), Cauchysche Folge oder Fundamentalfolge ist in der Mathematik eine Folge, bei der der Abstand der Folgenglieder im Verlauf der Folge beliebig klein wird. Cauchy-Folgen sind nach dem französischen Mathematiker Augustin-Louis Cauchy benannt und von grundlegender Bedeutung für den Aufbau der Analysis.

Der Grenzwert einer Cauchy-Folge reeller Zahlen ist immer eine reelle Zahl. Der Grenzwert einer Cauchy-Folge rationaler Zahlen kann auch eine irrationale Zahl sein. Allgemein konvergieren genau dann alle Cauchy-Folgen von Elementen eines metrischen Raums, falls der Raum vollständig ist. Jeder unvollständige metrische Raum kann durch die Bildung von Äquivalenzklassen von Cauchy-Folgen vervollständigt werden. Also sind alle Cauchy-Folgen konvergent!

 

Definiton formell:

 

\forall \varepsilon>0 \quad \exists N\in\mathbb{N} \quad \forall m,n \ge N \colon \quad \left|a_m-a_n \right|<\varepsilon

Blog


Gemeinsam gegen Matheprobleme - die fb Gruppe

Es gibt nun eine Facebook-Gruppe von Studimup, auf welcher ihr Hilfe bei Matheproblemen bekommt. Dies funktioniert so:

  1. Tretet der Gruppe bei
  2. Ihr stellt eure Frage als Post in die Gruppe.
  3. Wenn jemand die Antwort weiß, kann er sie in den Kommentaren beantworten. 

Wenn ihr also mal Schwierigkeiten bei einer bestimmten Aufgabe oder einem Thema habt, dann könnt ihr eure Frage in die Gruppe posten. Ebenso könnt ihr anderen Personen bei ihren Problemen helfen und so selbst das Thema üben und vertiefen. Mit der Gruppe soll es möglich sein, möglichst schnell antworten auf ein Problem zu bekommen (z.B. bei einer Hausaufgabe). Je mehr Leute mitmachen, desto besser funktioniert dieses System. 

mehr lesen 1 Kommentare