Cauchy-Folge

Eine Cauchy-Folge (bzw. Cauchyfolge), Cauchysche Folge oder Fundamentalfolge ist in der Mathematik eine Folge, bei der der Abstand der Folgenglieder im Verlauf der Folge beliebig klein wird. Cauchy-Folgen sind nach dem französischen Mathematiker Augustin-Louis Cauchy benannt und von grundlegender Bedeutung für den Aufbau der Analysis.

Der Grenzwert einer Cauchy-Folge reeller Zahlen ist immer eine reelle Zahl. Der Grenzwert einer Cauchy-Folge rationaler Zahlen kann auch eine irrationale Zahl sein. Allgemein konvergieren genau dann alle Cauchy-Folgen von Elementen eines metrischen Raums, falls der Raum vollständig ist. Jeder unvollständige metrische Raum kann durch die Bildung von Äquivalenzklassen von Cauchy-Folgen vervollständigt werden. Also sind alle Cauchy-Folgen konvergent!

 

Definiton formell:

 

\forall \varepsilon>0 \quad \exists N\in\mathbb{N} \quad \forall m,n \ge N \colon \quad \left|a_m-a_n \right|<\varepsilon

Blog


Spickzettel A6 - Die Lernkarten

Die neuen Spickzettel A6 by Studimup sind da! Das sind Lernkarten mit knackigen und einfachen Erklärungen im praktischen DIN A6 Format. Sie ermöglichen es einfach Mathe zu lernen und zu wiederholen, egal wo man ist, ob im Bus, der Bahn oder in der Sonne auf dem Balkon. In drei Varianten nach Klassenstufen unterteilt, findet jeder seine passenden Lernkarten:

Spickzettel A6 in drei Varianten
mehr lesen 0 Kommentare