Kern und Bild einer Linearen Abbildung

 Sei f : V → W ein Homomorphismus von Vektorräumen.

  • Das Bild von f ist dann:

    im f := f(V) = {w∈W | w = f(v) für ein v∈V}.

    Das Bild einer Abbildung ist plump gesagt das was raus kommt, wenn man die Elemente von der Menge mit der Abbildungsvorschrift abbildet.                                                                  

  • Der Kern von f ist

    ker f := f−1(0) = {v∈V | f(v) = 0}.

    der Kern deiner Abbildung ist die Menge aller Elemente von V, die auf das neutrale Element 0 des Vektorraums W abgebildet werden. Also zum Beispiel die Vektoren die Multipliziert mit einer Matrix den 0 Vektor ergeben.

 

Ker f und im f sind Spezielle Teilmengen von V bzw. von W. Der Kern von f ist ein Untervektorraum von V und das Bild von f ist ein Untervektorraum von W.

 

Wenn  f : V →W ein Homomorphismus ist, weiß man auch, dass:

  • f ist genau dann injektiv, wenn ker f = {0V}.
  • f ist genau dann surjektiv, wenn im f = W.

Empfohlenes Video zum Thema

Blog


Berechnung der Inflation

Eine Anwendung der Mathematik, von der häufig in den Nachrichten die Rede ist, ist die Berechnung der Inflation. Als Inflation bezeichnet man den Wertverfall von Geld bzw. die Verteuerung von Preisen. Wie man diesen Preisanstieg berechnet und was es für Unterschiede bei der Berechnung gibt, erkläre ich euch in diesem Artikel. (Dies braucht ihr übrigens in den ersten Semestern bei Wirtschaftsstudiengängen z.B. bei BWL)

mehr lesen 0 Kommentare