Kern und Bild einer Linearen Abbildung

 Sei f : V → W ein Homomorphismus von Vektorräumen.

  • Das Bild von f ist dann:

    im f := f(V) = {w∈W | w = f(v) für ein v∈V}.

    Das Bild einer Abbildung ist plump gesagt das was raus kommt, wenn man die Elemente von der Menge mit der Abbildungsvorschrift abbildet.                                                                  

  • Der Kern von f ist

    ker f := f−1(0) = {v∈V | f(v) = 0}.

    der Kern deiner Abbildung ist die Menge aller Elemente von V, die auf das neutrale Element 0 des Vektorraums W abgebildet werden. Also zum Beispiel die Vektoren die Multipliziert mit einer Matrix den 0 Vektor ergeben.

 

Ker f und im f sind Spezielle Teilmengen von V bzw. von W. Der Kern von f ist ein Untervektorraum von V und das Bild von f ist ein Untervektorraum von W.

 

Wenn  f : V →W ein Homomorphismus ist, weiß man auch, dass:

  • f ist genau dann injektiv, wenn ker f = {0V}.
  • f ist genau dann surjektiv, wenn im f = W.

Blog


Spickzettel A6 - Die Lernkarten

Die neuen Spickzettel A6 by Studimup sind da! Das sind Lernkarten mit knackigen und einfachen Erklärungen im praktischen DIN A6 Format. Sie ermöglichen es einfach Mathe zu lernen und zu wiederholen, egal wo man ist, ob im Bus, der Bahn oder in der Sonne auf dem Balkon. In drei Varianten nach Klassenstufen unterteilt, findet jeder seine passenden Lernkarten:

Spickzettel A6 in drei Varianten
mehr lesen 0 Kommentare