Matrizenmultiplikation

Gegeben seien die beiden reellen Matrizen

Da die Matrix A ebenso viele Spalten wie die Matrix B Zeilen besitzt, ist die Matrizenmultiplikation A\cdot B durchführbar. Nachdem A zwei Zeilen und A zwei Spalten hat, wird das Matrizenprodukt ebenfalls zwei Zeilen und Spalten aufweisen. Zur Berechnung des ersten Matrixelements der Ergebnismatrix werden die Produkte der entsprechenden Einträge der ersten Zeile von A und der ersten Spalte von A aufsummiert (die Sternchen stehen für noch nicht berechnete Elemente):

Für das nächste Element der Ergebnismatrix in der ersten Zeile und zweiten Spalte wird entsprechend die erste Zeile von A und die zweite Spalte von B verwendet:

Dieses Rechenschema setzt sich nun in der zweiten Zeile und ersten Spalte fort:

Es wiederholt sich bei dem letzten Element in der zweiten Zeile und zweiten Spalte:

Ein Video zur Vertiefung:

Blog


Berechnung der Inflation

Eine Anwendung der Mathematik, von der häufig in den Nachrichten die Rede ist, ist die Berechnung der Inflation. Als Inflation bezeichnet man den Wertverfall von Geld bzw. die Verteuerung von Preisen. Wie man diesen Preisanstieg berechnet und was es für Unterschiede bei der Berechnung gibt, erkläre ich euch in diesem Artikel. (Dies braucht ihr übrigens in den ersten Semestern bei Wirtschaftsstudiengängen z.B. bei BWL)

mehr lesen 0 Kommentare