Binomialkoeffizient

Der Binomialkoeffizient ist eine Funktion, mit welcher sich Aufgaben der Kombinatorik lösen lassen. So kann man damit beispielsweise berechnen, wie viele Möglichkeiten es gibt k Objekte aus n Objekten zu wählen (ohne zurücklegen, ohne Betrachtung der Reihenfolge). Zum Beispiel, wie viele Möglichkeiten es beim Lotto 6 aus 49 gibt. So sieht der Binomialkoeffizient aus:

Die Ausrufezeichen bedeuten Fakultät. Wie man das ausrechnet findet ihr HIER

Beispiel 1

Es werden 4 aus 6 Kugeln gezogen. Dabei wird nicht zurückgelegt und die Reihenfolge, mit der die Kugeln gezogen werden, ist egal. 

 

Lösung: 

Setzt für n=6 ein und für k=4. Denn für n wird immer die gesamte Anzahl eingesetzt und für k die Anzahl, welche davon ausgesucht wird. Dann ergibt sich als Lösung, dass es 15 Möglichkeiten gibt, 4 aus 6 Kugeln zu ziehen. 

Beispiel 2

In einer Klasse mit 30 Schülern sollen 3 Schüler abgefragt werden. Der Lehrer zieht die Namen zufällig aus einem Hut, in dem Zettel mit den Namen der Schüler sind. Wie viele mögliche Kombinationen von abgefragten Schülern gibt es?

 

Lösung:

Ihr setzt für n=30 ein und für k=3. Dann erhaltet ihr die Lösung, nämlich das es 4060 Möglichkeiten gibt.

Rechenregeln

Blog


Wie berechnet man die durchschnittlichen Kosten für ein Panini-Sammelalbum?

Viele Fußballfans sammeln leidenschaftlich Panini-Sticker zur WM 2018. Die wenigsten fragen sich jedoch, wie viel ein volles Album in etwa kostet und wie viele Sticker man kaufen muss, bis man jeden mindestens einmal hat. Studimup zeigt euch, wie viele Bildchen und Packungen ihr im Durchschnitt braucht, um ein vollständiges Sammelalbum zu haben und wie viel dieses dann ca. kostet. Natürlich zeigen wir euch auch, wie man das berechnet. 

mehr lesen 0 Kommentare

Weitere Beiträge