Supremum und Infimum

Supremum

 Sei M ⊂ ℝ nicht leer. Eine Zahl s ∈ ℝ heißt Supremum von M, kurz supM, falls gilt:

  1. x ≤ s ∀x ∈ M
  2. s ≤ a für alle oberen Schranken a von M.

Ist s ∈ M, so heißt s Maximum von M (ACHTUNG Maximum ist ein Spezialfall). Es ist also die kleinste obere Schranke von M, was einfach bedeutet, es ist das erste (und somit kleinste) Element was  M einschränkt, so zu sagen eine Grenze zwischen der Menge und allen Elementen die nach oben hin nicht mehr enthalten sind. Man sagt kleinste obere Schranke, da größere Zahlen die nicht in M liegen ja auch Schranken sind, die werden aber nie erreicht. Maximum nennt man es dann, wenn diese Grenze noch selbst in der Menge liegt.

 

Beispiel:

Für M = (0,1)∪[35,100] ist a = 100 Maximum von M, da 100 in der Menge M liegt.

Für M = (0,1)∪[35,100) ist s = 100 Supremum von M, aber nicht Maximum von M, da 100 nicht mehr in der Menge M liegt.

Infimum

Sei M ⊂R nicht leer. m ∈ℝ heißt Infimum von M, falls

  1. m ≤ x ∀x in M,
  2. a ≤ m für alle unteren Schranken a.

Ist m ∈ M, so heißt m Minimum von M. Es ist also genauso, wie das Supremum, nur für die untere Schranke.

 

Beispiel:

Für M = (0,1)∪[35,100] ist m = 0 Infimum von M, aber nicht Minimum von M. (da 0 nicht in M liegt)

Blog


Spickzettel A6 - Die Lernkarten

Die neuen Spickzettel A6 by Studimup sind da! Das sind Lernkarten mit knackigen und einfachen Erklärungen im praktischen DIN A6 Format. Sie ermöglichen es einfach Mathe zu lernen und zu wiederholen, egal wo man ist, ob im Bus, der Bahn oder in der Sonne auf dem Balkon. In drei Varianten nach Klassenstufen unterteilt, findet jeder seine passenden Lernkarten:

Spickzettel A6 in drei Varianten
mehr lesen 0 Kommentare