Abstand von einem Punkt und einer Geraden berechnen

Der Abstand eines Punktes zu einer Geraden ist der kürzeste Abstand der beiden. Also der Abstand, der senkrecht vom Punkt zur Gerade geht. Um dies zu berechnen, erfordert es mehrere Schritte. Ihr geht so vor:

  1. Zunächst braucht ihr eine Hilfsebene. Stellt die Ebenengleichung in Normalenform, für die Ebene die durch den Punkt und die Gerade geht, auf. Dazu setzt ihr den Punkt als Aufpunkt und den Richtungsvektor der Geradengleichung als Normalenvektor der Ebene ein. Also nur einsetzten, nichts rechnen! (Im Beispiel unten könnt ihr euch das mal anschauen)
  2. Wandelt die Ebenengleichung von der Normalenform in die Koordinatenform um. (Einfach ausmultiplizieren) Wie das genau geht, findet ihr HIER.
  3. Setzt die Geradengleichung in die Ebenengleichung ein (erste Zeile der Geradengleichung für x1, zweite für x2 und dritte für x3) und berechnet das Ergebnis für λ.
  4. Setzt das Ergebnis für λ in die Geradengleichung ein und berechnet den Punkt. Dies ist der Punkt der Geraden, der am nächsten an eurem Punkt ist.
  5. Berechnet den Abstand von diesem zu eurem Punkt. Also den einen Punkt minus den Anderen und davon den Betrag. (HIER wie man Abstände von Punkten berechnet)

 

Beispiel

Seien diese Gerade und dieser Punkt gegeben:

 

 

Zunächst müsst ihr die Ebenengleichung der Ebene, in der die Gerade und der Punkt liegt bestimmen. Dazu setzt ihr den Punkt als Aufpunkt in die Ebenengleichung ein und den Vektor der Geradengleichung als Normalenvektor ein:

 

 

Danach bestimmt ihr die Koordinatenform dieser Ebene, wie dies Schritt für Schritt geht, findet ihr HIER. Dann erhaltet ihr dies:

 

 

Bestimmt als nächstes x1, x2 und x3 aus der Parameterform der Geradengleichung, also die erste Zeile ist x1, die Zweite x2 und die dritte x3. Allerdings kommt ja in der Ebenengleichung kein x3 vor, weshalb wir nur x1 und x2 benötigen. Diese setzt ihr dann in die Ebenengleichung ein:

 

 

Nun müsst ihr den Punkt bestimmen, indem ihr das Ergebnis von darüber in die Geradengleichung einsetzt, so erhaltet ihr den Punkt auf der Geraden der am nächsten an eurem Punkt ist, zu dem ihr den Abstand berechnen sollt:

 

 

Nun müsst ihr nur noch den Abstand dieser beiden Punkte bestimmen (HIER gehts zum Abstand von Punkten). Dazu rechnet ihr den einen Punkt minus den anderen (welchen ihr von welchem abzieht ist egal). Von dem Vektor, den ihr erhaltet, berechnet ihr den Betrag und ihr seid fertig:

 

Hier seht ihr dieses Beispiel in 3D, der Abstand wurde in rot eingezeichnet:



Kleine Rechenhelfer:

Hier könnt ihr euch den Abstand berechnen (falls nicht angezeigt liegt es an Adblock):

Empfohlenes Video zum Thema

Mathe im Alltag


Wie funktioniert Risikomanagement?

Finanzkrisen meistern: Erwarte das Unerwartete

 

Was sind die Risiken, wenn ich Finanzgeschäfte tätige? Wie groß sind diese Risiken? Und wie viel Risiko darf ich mir erlauben? Dies sind zentrale Fragen in der Risikomanagement-Abteilung der Deutschen Bundesbank und jeder anderen Bank. Insbesondere bei der zweiten Frage, der Messung der Risiken, kommt man ohne Mathematik in der Regel nicht aus.

mehr lesen 1 Kommentare

Wozu braucht man Mathe?

Ihr habt euch in der Schule bestimmt schon öfter gefragt, „wozu brauche ich das später mal?“, bestimmt auch in Mathe. Eine Frage, die viele Schüler beschäftigt, da ihnen zu wenig erklärt wird, wozu dies alles mal verwendet wird.

mehr lesen 0 Kommentare