Wurzelfunktion

Die Wurzelfunktion ist eine Funktion, bei der das x unter einer Wurzel steht, also so: 

Allgemeine Form einer Wurzelfunktion

mit n∈ℕ. 

 

Die Wurzelfunktion ist die Umkehrfunktion der Potenzfunktion für positive Zahlen.

Grafische Darstellung von verschiedenen Wurzelfunktionen

Beispiele

Grün:

Eine einfache Wurzelfunktion

Blau:

Eine gestauchte Wurzelfunktion

Orange:

Eine verschobene Wurzelfunktion

Vorwissen

Ihr müsst natürlich die Wurzel kennen, um mit der Wurzelfunktion arbeiten zu können. Hier findet ihr alles zur Wurzel:

Definitionsmenge und Wertemenge

Die Definitionsmenge und Wertemenge der Wurzelfunktion hängt davon ab, ob der Wurzelexponent gerade oder ungerade ist:

 

Für gerade Wurzelexponenten:

Für ungerade Wurzelexponenten:

  • Definitionsmenge D=ℝ
  • Wertemenge W=ℝ 

Nullstellen

Die Nullstelle ist bei Null, falls die Funktion nicht nach oben oder unten verschoben wurde (HIER geht´s zur Artikel über Nullstellen).

Hier könnt ihr euch Nullstellen berechnen lassen:

Graphzeichner

Hier könnt ihr euch die Wurzelfunktion zeichnen lassen und Werte- und Definitionsmenge anzeigen lassen (falls nicht angezeigt liegt es an AdBlocker):

Monotonie

Die Wurzelfunktion ist streng monoton steigend. Mehr zu dem Thema HIER.

Grenzwerte

Der Grenzwert der Wurzelfunktion für x gegen Unendlich ist Unendlich. Mehr zu dem Thema HIER.

Ableitung

Um die Ableitung der Wurzelfunktion zu bestimmen, formt ihr am besten die Wurzel als Exponenten um und geht dann so vor wie bei der Potenzfunktion:

  1. Also zieht den Exponenten vor das x
  2. Zeiht eins vom Exponenten am x ab

Beispiel:

Ableitung der Wurzelfunktion

Blog


NEU: Spickzettel A6

Die neuen Spickzettel A6 by Studimup sind da! Das sind Lernkarten mit knackigen und einfachen Erklärungen im praktischen DIN A6 Format. Sie ermöglichen es einfach Mathe zu lernen und zu wiederholen, egal wo man ist, ob im Bus, der Bahn oder in der Sonne auf dem Balkon. In drei Varianten nach Klassenstufen unterteilt, findet jeder seine passenden Lernkarten:

mehr lesen 0 Kommentare

Weitere Beiträge