Ringe

Diese Algebraische Struktur hat nicht nur eine Verknüpfung (wie Gruppen), sondern gleich 2!

 

Definition:

Ein Ring ist eine Menge R mit zwei Verknüpfungen “+” und “·”, so dass gilt:

  •  “·” ist eine assoziative Verknüpfung auf ℝ
  • es gilt das Distributivgesetz: für alle a,b,c∈ℝ gilt: a·(b+c) = (a·b) + (a·c) = (b+c)·a = (b·a) + (c·a).

 

Beispiele:

  • ℤ mit der gewöhnlichen Addition “+” und der gewöhnlichen Multiplikation “·” ist ein Ring.
  • ℕ mit “+” und “·” ist kein Ring, da ℕ mit “+” keine Gruppe ist.
  • ℚ oder ℝ mit “+” und “·” sind Ringe. 
  • Der Nullring ist der Ring, der nur aus der Null besteht (in diesem Fall gibt es nur jeweils eine Wahl für die Verknüpfungen “+” und “·”).

 

Bemerkung:

  • Ist R ein Ring, so nennt man die Verknüpfung ”+” Addition und die Verknüpfung “·” Multiplikation.
  • Das bzgl. der Addition neutrale Element wird mit 0 bezeichnet, und das zu a bzgl. der Addition inverse Element mit −a.
  • Ein Ring heißt kommutativ, wenn auch die Verknüpfung “·” kommutativ ist. 
  • Ein Ring heißt unitär (oder Ring mit Eins), falls es auch bzgl. der Multiplikation ein neutrales Element gibt. Dieses wird mit “1” bezeichnet. 
  • Wenn man eine Rechnung der Form a·b+c·e+ f+g·h hat, weis man nicht, in welcher Reihenfolge man die Verknüpfungen ausrechnen soll. Dafür gibt es die berühmt berüchtigte Regel "Punkt vor Strich", der Ausdruck a·b+c soll also (a·b)+c bedeuten.

 

Empfohlenes Video zum Thema

Blog


Berechnung der Inflation

Eine Anwendung der Mathematik, von der häufig in den Nachrichten die Rede ist, ist die Berechnung der Inflation. Als Inflation bezeichnet man den Wertverfall von Geld bzw. die Verteuerung von Preisen. Wie man diesen Preisanstieg berechnet und was es für Unterschiede bei der Berechnung gibt, erkläre ich euch in diesem Artikel. (Dies braucht ihr übrigens in den ersten Semestern bei Wirtschaftsstudiengängen z.B. bei BWL)

mehr lesen 0 Kommentare

Taschenrechner Test und Vergleich

Es gibt viele verschiedene Taschenrechner, da ist es manchmal schwer zu entscheiden, welcher der richtige ist. Hier stellen wir euch einige Taschenrechner vor und vergleichen sie. Hier findet ihr eine Tabelle mit allen wichtigen Eigenschaften und Unterschieden im Vergleich. Ob ihr sie im Unterricht nutzen dürft, müsst ihr eure Lehrer fragen, da es sich je nach Bundesland unterscheidet.

mehr lesen 0 Kommentare