Grundlegende Begriffe

Häufig findet man in mathematischen Sätzen variablenabhängige Aussagen. A(x) sei also eine Aussage, die von der Variablen x abhängt, z.B. A(x) := {“x ist Primzahl"} oder A(s,p) := {“Student s versteht Professor p"}. Gebräuchlich sind sogenannte “Quantoren”, um den Geltungsbereich derartiger Aussagen in knapper Form zu beschreiben. Die Symbole “∀”, “∃”, und “∃!” finden Verwendung und werden folgendermaßen definiert:

  • ∀: "für alle"
  • ∃: "es exestiert ein"
  • ∃!: "es exestiert genau ein"

Hier mit Beispielen:

  • ∀s A(s,p) ”Für alle Studenten s gilt: s versteht den Professor p.“
  • ∃s A(s,p) ”Es gibt einen Studenten s, sodass gilt: s versteht den Professor p.“ Achtung: Dies ist eine Existenzaussage, d.h. es gibt mindestens einen Studenten s, für den die Aussage A(s,p) richtig ist.
  • ∃!s A(s,p) ”Es gibt genau einen Studenten s, der p versteht“(d.h. alle anderen verstehen ihn nicht.)

Entsprechend lassen sich Quantoren kombinieren

  • ∃s ∀p A(s,p): ”Es gibt einen Studenten s, sodass für alle Professoren p gilt: s versteht p.“
  • ∀s ∀p A(s,p): ”Für alle Studenten s gilt: s versteht alle Professoren p.“

Sehr wichtig sind die folgenden Regeln zur Negation von Quantorenaussagen:

  • ¬(∀x A(x)) ⇔∃x (¬A(x)), • ¬(∃x A(x)) ⇔∀x (¬A(x)),

entsprechend gil:

¬(∃s ∀p A(s,p)) = ¬(∃s (∀p A(s,p)))

= ∀s ¬(∀p A(s,p))

= ∀s ∃p ¬A(s,p).

Blog


Geld sparen mit dem int. Studentenausweis

Studenten und Schüler sind meist knapp bei Kasse und daher wird jede Möglichkeit genutzt Geld zu sparen. Eine dieser Möglichkeiten ist der internationale Studenten- und Schülerausweis (ab 12 Jahren). Mit diesem könnt ihr in über 135 Ländern Vergünstigungen bekommen! Dafür müsst ihr nur 15€ für den Ausweis zahlen. Übrigens gibt es den Ausweis auch für Lehrer!

mehr lesen 0 Kommentare