Trigonometrische Funktionen

Den Kosinus, Sinus und Tangens kennt ihr sicherlich schon aus der Geometrie. Hier werden nun die Funktionen dieser Operatoren vorgestellt.



Sinusfunktion

Die Sinusfunktion sieht folgendermaßen aus:

y=sin(x)

 

Der Graph des Sinus ist die sogenannte Sinuskurve, hier die wichtigsten Eigenschaften:

  • Die Sinuskurve ist periodisch mit einer Periode von 2π. (Das bedeutet nach 2π beginnt sie wieder von vorne). Daraus folgt: sin(x)=sin(x+2π)
  • Bei x=0 ist die Sinusfunktion 0 (also sie beginnt bei 0)
  • Die Nullstellen sind bei ganzzahligen Werten von π, also π, 2π, 3π, 4π....
  • Der Graph schwankt zwischen -1 und 1. Die Hoch- und Tiefpunkte sind bei π/2, also bei π/2, 2π/2, 3π/2....
  • Definitionsbereich: D=ℝ
  • Wertebereich: W=[-1;1]
Die Sinusfunktion grafisch dargestellt

Kosinusfunktion

Die Kosinusfunktion sieht folgendermaßen aus:

y=cos(x)

 

Der Graph der Kosinusfunktion ist die Kosinuskurve mit folgenden Eigenschaften:

  • So wie die Sinusfunktion ist auch die Kosinusfunktion periodisch mit der Periode 2π -> cos(x)=cos(x+2π)
  • Bei x=0 ist die Kosinusfunktion 1, also genau andersrum als die Sinusfunktion
  • Die Nullstellen sind genau da, wo die Hoch- und Tiefpunkte der Sinusfunktion sind, also bei π halben.
  • Die Hoch- und Tiefpunkte der Kosinusfunktion sind an den Nullstellen der Sinusfunktion, also an ganzzahligen Vielfachen von π.
  • Definitionsbereich: D=ℝ
  • Wertebereich: W=[-1;1]
Die Cosinusfunktion grafisch dargestellt


Tangensfunktion

Die Tangensfunktion ist folgendermaßen definiert:

y=tan(x)

 

dabei ist der Tangens eine Zusammensetzung der Sinus- und Kosinusfunktionen, nämlich der Quotient von Sinus und Kosinus:

Definition der Tangesfunktion mit Sinus und Cosinus

Mit diesem Wissen lassen sich die Nullstellen und Definitionslücken leicht bestimmen:

  • Nullstellen der Tangensfunktion sind dieselben wie bei der Sinusfunktion
  • Definitionslücken sind an den Stellen, an denen die Kosinusfunktion 0 ist, da man ja nicht durch 0 teilen darf. Also an den Nullstellen der Kosinusfunktion.
  • Die Periode ist genauso wie bei der Cosinus- und Sinusfunktion π
  • Definitionsbereich: D=ℝ\{(ℤ+1/2)·π} (das bedeutet einfach, dass im Definitionsbereich ganz ℝ ist, außer alle vielfachen von π, die durch einhalb geteilt werden können. Also anders gesagt es ist überall definiert außer an den Nullstellen der Kosinusfunktion.)
  • Wertebereich: W=ℝ
Tangesfunktion grafisch dargestellt

Funktionen modulieren

Allgemein kommen die Funktionen eher selten in der reinen Form wie oben vor sondern eher in der Form:

 

y=a·sin(bx+c)+d

y=a·cos(bx+c)+d

  • a gibt die Amplitude an, also den höchstmöglichen Wert, wenn er 1 ist (wie in der Form von ganz oben), dann schwankt die Amplitude zwischen 1 und -1. Wäre a=2 so würde die Funktion zwischen 2 und -2 schwanken. (Probiert es doch mal aus im Graph Zeichner oben ;))
  • b verändert die Periode. Je größer b, umso kürzer ist die Periode, also desto gestauchter ist die Funktion
  • c verschiebt die Funktion nach links und rechts, ist c>0 so wird die Funktion nach links verschoben und ist c<0 wird sie nach rechts verschoben
  • d verschiebt die Funktion nach oben oder unten, wie ihr es schon aus linearen Funktionen kennt, dort heißt es dann meist t ;)

Ableitungen der jeweiligen Funktionen

Ableitung der Sinusfunktion:

Ableitung der Sinusfunktion

Ableitung der Cosinusfunktion:

Ableitung der Cosinusfunktion

Ableitung der Tangensfunktion:

Ableitung der Tangesfunktion

Mithelfen und teilen!

Blog


Facebook-Gruppe als Unterrichtswerkzeug nutzen

Viele Schüler verbringen viel Zeit auf den sozialen Netzwerken, dies stört viele Lehrer und Eltern. Jedoch kann man dies als Lehrer auch ausnutzen. Durch das Erstellen einer eigenen Facebook-Gruppe, in welche alle Schüler beitreten, können Lehrer ganz neue Möglichkeiten nutzen. Hier erklären wir euch, wie ihr so eine Gruppe als Lehrer nutzen könnt und wie ihr eine Gruppe auf Facebook erstellt. Besonders in Zeiten von Corona ist dies eine Möglichkeit mit den Schülern im Kontakt zu bleiben und Fragen zu beantworten. 

mehr lesen 0 Kommentare