Differentialrechnung

 

Definition:

Sei M⊂ℝn und x0∈M, f : M→ℝ. {e1,...,en} sei die Standard-Orthonormalbasis (gibt die Richtung an zb. x-Richtung) des ℝn. Sei i ∈ {1,...,n}. Für jede Nullfolge (hk)k∈ℕ mit der Eigenschaft, dass hk ≠0 für alle k∈ℕ ist, existiere der Grenzwert

 

Dann heißt f in x0 partiell differenzierbar bezüglich der Richtung ei, und

 

heißt partielle Ableitung von f in Richtung ei.

 

Bemerkung:

  • Fall n = 1. Wir benutzen die Schreibweise

 

 

Geometrisch beschreibt f´(x0) die Steigung der Tangente an den Graph von f im Punkte (x0,f(x0)).

 

  • Fall n > 1. Wir fassen die partielle Ableitung in x0 in einem Vektor

 

 

zusammen, der Gradient von f in x0 heißt. Andere Schreibweise:

 

 

Bemerkung:

Stetigkeit impliziert im Allgemeinen nicht Differenzierbarkeit. Als Gegenbeispiel betrachten wir f(x) = |x|. Diese Funktion ist in x0=0 stetig, aber nicht differenzierbar.

 

Satz 1 (Produktregel, Quotientenregel):

 Sei x0∈M, M ⊂ R, f,g : M→ℝ seien in x0 differenzierbar. Dann gilt:

  • f + g : M→ℝ ist in x0 differenzierbar mit (f + g)´(x0) = f´(x0) + g´(x0).

  • Produktregel: f ·g : M→ℝ ist in x0 differenzierbar mit (f ·g)´(x0) = f´(x0)g(x0) + f(x0)g´(x0).

  • Quotientenregel: Falls g(x0)≠0, so ist f /g : {x ∈ M|g(x)≠0}→ℝ in x0 differenzierbar mit:

 

 

Satz 2 (Kettenregel):

Sei x0∈M, M⊂ℝ . f : M → ℝ sei in x0 differenzierbar. g : K → ℝ sei differenzierbar in f(x0), f(M) ⊂ K und f(x0) sei innerer Punkt von K. Dann ist g ◦f in x0 differenzierbar und es gilt

 

(g◦f)´(x0) = g´(f(x0))·f´(x0).

 

Definition:

f : M → ℝ heißt n-mal (stetig) differenzierbar, falls f(n) für n∈ℕ existiert und stetig ist.

 

 

Empfohlenes Video zum Thema

Blog


Geld sparen mit dem int. Studentenausweis

Studenten und Schüler sind meist knapp bei Kasse und daher wird jede Möglichkeit genutzt Geld zu sparen. Eine dieser Möglichkeiten ist der internationale Studenten- und Schülerausweis (ab 12 Jahren). Mit diesem könnt ihr in über 135 Ländern Vergünstigungen bekommen! Dafür müsst ihr nur 15€ für den Ausweis zahlen. Übrigens gibt es den Ausweis auch für Lehrer!

mehr lesen 0 Kommentare