Differentialrechnung

 

Definition:

Sei M⊂ℝn und x0∈M, f : M→ℝ. {e1,...,en} sei die Standard-Orthonormalbasis (gibt die Richtung an zb. x-Richtung) des ℝn. Sei i ∈ {1,...,n}. Für jede Nullfolge (hk)k∈ℕ mit der Eigenschaft, dass hk ≠0 für alle k∈ℕ ist, existiere der Grenzwert

 

Dann heißt f in x0 partiell differenzierbar bezüglich der Richtung ei, und

 

heißt partielle Ableitung von f in Richtung ei.

 

Bemerkung:

  • Fall n = 1. Wir benutzen die Schreibweise

 

 

Geometrisch beschreibt f´(x0) die Steigung der Tangente an den Graph von f im Punkte (x0,f(x0)).

 

  • Fall n > 1. Wir fassen die partielle Ableitung in x0 in einem Vektor

 

 

zusammen, der Gradient von f in x0 heißt. Andere Schreibweise:

 

 

Bemerkung:

Stetigkeit impliziert im Allgemeinen nicht Differenzierbarkeit. Als Gegenbeispiel betrachten wir f(x) = |x|. Diese Funktion ist in x0=0 stetig, aber nicht differenzierbar.

 

Satz 1 (Produktregel, Quotientenregel):

 Sei x0∈M, M ⊂ R, f,g : M→ℝ seien in x0 differenzierbar. Dann gilt:

  • f + g : M→ℝ ist in x0 differenzierbar mit (f + g)´(x0) = f´(x0) + g´(x0).

  • Produktregel: f ·g : M→ℝ ist in x0 differenzierbar mit (f ·g)´(x0) = f´(x0)g(x0) + f(x0)g´(x0).

  • Quotientenregel: Falls g(x0)≠0, so ist f /g : {x ∈ M|g(x)≠0}→ℝ in x0 differenzierbar mit:

 

 

Satz 2 (Kettenregel):

Sei x0∈M, M⊂ℝ . f : M → ℝ sei in x0 differenzierbar. g : K → ℝ sei differenzierbar in f(x0), f(M) ⊂ K und f(x0) sei innerer Punkt von K. Dann ist g ◦f in x0 differenzierbar und es gilt

 

(g◦f)´(x0) = g´(f(x0))·f´(x0).

 

Definition:

f : M → ℝ heißt n-mal (stetig) differenzierbar, falls f(n) für n∈ℕ existiert und stetig ist.

 

 

Blog


Warum ist die Ausbreitung von Corona so gefährlich?

Der neue Coronavirus verbreitet sich exponentiell. Nur was bedeutet das? Das versuchen wir hier zu veranschaulichen, auch wieso das so gefährlich ist. 

Grafik zur Ausbreitung von Corona, wenn es sich ungebremst ausbreitet.
Beispielhafte Ausbreitung von Corona.
mehr lesen 2 Kommentare