Archimedisches Axiom

Das Archimedische Axiom besagt folgendes:

Für alle x > 0 und y > 0 gibt es ein n∈ℕ mit x< ny. Das bedeutet, egal welche Zahlen x und y ich nehme, solange sie positiv sind, kann ich immer ein n finden, sodass ny größer ist als x, egal wie groß x ist. Daraus folgt, dass es für jede Zahl eine Größere gibt..

 

Folgerungen:

  1. Für jedes x∈ℝ  gibt es ein n∈ℝ mit n>x (dh. es gibt immer eine kleinere Zahl)
  2. Für alle ε >0 exestiert ein n∈ℕ mit 1/n < ε
  3. Für alle a>1 und k≥0 gibt es ein n∈ℕ für das gilt: an>k
  4. Umgekehrt, wenn a zwischen 0 und 1 ist, gibt es ein an < ε

Blog


Warum ist die Ausbreitung von Corona so gefährlich?

Der neue Coronavirus verbreitet sich exponentiell. Nur was bedeutet das? Das versuchen wir hier zu veranschaulichen, auch wieso das so gefährlich ist. 

Grafik zur Ausbreitung von Corona, wenn es sich ungebremst ausbreitet.
Beispielhafte Ausbreitung von Corona.
mehr lesen 1 Kommentare