Vollständigkeitsaxiom

Die Folgenden Aussagen sind äquavilent und mit einer Aussage lassen sich alle anderen Folgern. Auf diesen Prinzipien bzw. Axiomen beruht das Vollständigkeitsaxiom und lässt sich damit beweisen (es sagt aus das die reellen Zahlen Vollständig "ohne Lücken" sind):

  1. Supremums-Prinzip: Jede beschränkte Folge hat ein Supremum
  2. Monotonie-Prinzip: Jede beschränkte Folge enthällt eine monotone Teilfolge die auch beschränkt ist.
  3. Auswahlprinzip von Bolzano-Weierstraß: Jede beschränkte Folge enthällt eine konvergente Teilfolge.
  4. Cauchysches Konvergenzprinzip: Jede Cauchyfolge in den reellen Zahlen ist konvergent.
  5. Intervallschachtelungsprinzip: Zu jeder Intervallschachtelung gibt es genau einen Punkt, der in allen Intervallen enthalten ist.
  6. Dedekindsches Schnitt-Axiom: Jeder Schnitt hat genau einen Trennungspunkt

Blog


Trostpreise bei Studimup

Da die deutsche Nationalmannschaft sich so früh aus dem Turnier⚽ ausgeschieden ist 😞, gibt es als Trost reduzierte Preise bei Studimup! So kann die nun zusätzlich frei gewordene Zeit gleich produktiv genutzt werden. Unsere Spickzettel 2.0 sind nun bis Ende des Turniers um 33% reduziert (so viel Prozent, wie Deutschland an Spielen bei der WM gewonnen hat)! Also zugreifen! 

mehr lesen 0 Kommentare