Mengen mit Verknüpfungen

Definition: Eine Verknüpfung ”◦” auf M ist eine Abbildung ◦: M×M → M

 

Eine Verknüpfung auf M ist also nichts anderes als eine Vorschrift, die zwei Elementen a und b aus M ein neues Element aus M zuordnet (Funktionen sind z.B.: auch Abbildungen), das man mit a◦b bezeichnet. Dabei kommt es auf die Reihenfolge an, im allgemeinen ist a◦b nicht das selbe wie b◦a. Der Kringel steht nur für irgend eine beliebige Verknüpfung, diese kann "+" sein oder auch was ganz anderes.

 

Beispiele: 

  • M = ℝ und ◦ = + (das heißt der Kringel ist ein +), also a◦b = a + b,
  • M = ℝ und ◦ = ·, also a◦b = a·b.
  • Sei M eine beliebige Menge und die Verknüpfung definiert durch a◦b = a für alle a,b∈ M.
  • Sei M beliebig und sei e ∈ M irgendein Element. Dann können wir eine Verknüpfung definieren durch a◦b=e für alle a,b∈ M.
  • Sie A eine Menge und M = P(A) die Menge aller Teilmengen von A und die Verknüpfung definiert durch U◦V = U∩V.
  • Sei N eine beliebige Menge und M = Abb(N,N) die Menge aller Abbildungen von N nach N und f ◦ g die Verkettung der Abbildungen f und g.

 

Klassifizierung von Verknüpfungen:

  • kommutativ, falls a◦b = b◦a für alle a,b aus M gilt. 
  • assoziativ, falls (a◦b)◦c = a◦(b◦c) gilt für alle a,b,c aus M.

 

 

Neutrales und Inverses Element

Ein Element e aus M heißt neutral (bzgl. der Verknüpfung◦), falls für alle a aus M gilt: a◦e = a und e◦a =a.

Bemerkung: Es kann höchstens ein neutrales Element in einer Menge geben.

 

Sei a ein Element aus M. Ein Element b heißt invers zu a, falls a◦b = e und b◦a = e gilt.

Bemerkung: Für jedes Element in einer Menge kann es höchstens ein inverses Element geben.

Beweis:  Sind b und b´ invers zu a, so gilt b = b◦e = b◦(a◦b´) = (b◦a)◦b´ = e◦b´ = b´.

Blog


Aktien für Anfänger: Wie Studenten an der Börse starten können

Studenten und Aktien – passt nicht zusammen. Eine verbreitete Sichtweise, die sich unter anderem aus der Tatsache speist, dass angehende Akademiker selten mit Geld um sich schmeißen können. Aber: Für Studenten werden die Börsen zunehmend interessanter. Der Trend, dass wieder mehr Aktien gezeichnet werden – über den Beispielsweise auch das Handelsblatt berichtet – geht nicht an Studenten vorbei.

 

Damit diese Anlegergruppe von den Renditen an den Börsen profitiert, braucht es allerdings ein paar Voraussetzungen. Hierzu gehört einerseits das Wertpapierdepot. Letzteres ist unverzichtbar, um Aktien und andere Wertpapiere zu handeln. Gleichzeitig braucht es auch das nötige Know-how. Ohne Börsenwissen werden beim Trading Fehler gemacht, die teuer werden.

Abbildung 1: Wenn Studenten in Aktien investieren möchten, sollten sie vorher einiges bedenken. Mit der richtigen Strategie und dem passenden Aktiendepot lassen sich hier jedoch durchaus Erfolge feiern.
Abbildung 1: Wenn Studenten in Aktien investieren möchten, sollten sie vorher einiges bedenken. Mit der richtigen Strategie und dem passenden Aktiendepot lassen sich hier jedoch durchaus Erfolge feiern.
mehr lesen 0 Kommentare