Mengen mit Verknüpfungen

Definition: Eine Verknüpfung ”◦” auf M ist eine Abbildung ◦: M×M → M

 

Eine Verknüpfung auf M ist also nichts anderes als eine Vorschrift, die zwei Elementen a und b aus M ein neues Element aus M zuordnet (Funktionen sind z.B.: auch Abbildungen), das man mit a◦b bezeichnet. Dabei kommt es auf die Reihenfolge an, im allgemeinen ist a◦b nicht das selbe wie b◦a. Der Kringel steht nur für irgend eine beliebige Verknüpfung, diese kann "+" sein oder auch was ganz anderes.

 

Beispiele: 

  • M = ℝ und ◦ = + (das heißt der Kringel ist ein +), also a◦b = a + b,
  • M = ℝ und ◦ = ·, also a◦b = a·b.
  • Sei M eine beliebige Menge und die Verknüpfung definiert durch a◦b = a für alle a,b∈ M.
  • Sei M beliebig und sei e ∈ M irgendein Element. Dann können wir eine Verknüpfung definieren durch a◦b=e für alle a,b∈ M.
  • Sie A eine Menge und M = P(A) die Menge aller Teilmengen von A und die Verknüpfung definiert durch U◦V = U∩V.
  • Sei N eine beliebige Menge und M = Abb(N,N) die Menge aller Abbildungen von N nach N und f ◦ g die Verkettung der Abbildungen f und g.

 

Klassifizierung von Verknüpfungen:

  • kommutativ, falls a◦b = b◦a für alle a,b aus M gilt. 
  • assoziativ, falls (a◦b)◦c = a◦(b◦c) gilt für alle a,b,c aus M.

 

 



Neutrales und Inverses Element

Ein Element e aus M heißt neutral (bzgl. der Verknüpfung◦), falls für alle a aus M gilt: a◦e = a und e◦a =a.

Bemerkung: Es kann höchstens ein neutrales Element in einer Menge geben.

 

Sei a ein Element aus M. Ein Element b heißt invers zu a, falls a◦b = e und b◦a = e gilt.

Bemerkung: Für jedes Element in einer Menge kann es höchstens ein inverses Element geben.

Beweis:  Sind b und b´ invers zu a, so gilt b = b◦e = b◦(a◦b´) = (b◦a)◦b´ = e◦b´ = b´.

Blog


Hilfe bei Matheproblemen - die fb Gruppe

Es gibt nun eine Facebook-Gruppe von Studimup, auf welcher ihr Hilfe bei Matheproblemen bekommt. Dies funktioniert so:

  1. Ihr stellt eure Frage als Post in die Gruppe.
  2. Wenn jemand die Antwort weiß, kann er sie in den Kommentaren beantworten. 

Wenn ihr also mal Schwierigkeiten bei einer bestimmten Aufgabe oder einem Thema habt, dann könnt ihr eure Frage in die Gruppe posten. Ebenso könnt ihr anderen Personen bei ihren Problemen helfen und so selbst das Thema üben und vertiefen. Mit der Gruppe soll es möglich sein, möglichst schnell antworten auf ein Problem zu bekommen (z.B. bei einer Hausaufgabe). Je mehr Leute mitmachen, desto besser funktioniert dieses System. 

mehr lesen 0 Kommentare