Äquivalenzrelationen

Definition: Sei X eine Menge.

Eine Relation auf X ist eine Teilmenge R der Menge der Paare aus X, also eine Teilmenge von X×X.

Eine Relation R auf X heißt

  • reflexiv, falls (a,a)∈R für alle a∈ X,
  • symmetrisch, falls (a,b)∈R auch (b,a) ∈ R impliziert für alle a,b∈ X,
  • transitiv, falls (a,b) ∈ R und (b,c) ∈ R auch (a,c) ∈ R impliziert für alle a,b,c∈ X.

Eine reflexive, symmetrische und transitive Relation heißt ¨Äquivalenz"- oder "Ahnlichkeitsrelation".

 

Wenn ihr nun also überprüfen wollt (oder müsst), ob es eine Äquivalenzrelation ist, müsst ihr diese Eigenschaften überprüfen. Hier ein Beispiel, ihr müsst überprüfen ob dies eine Äquivalenzrelation ist:

 

(x,y) ∈ ℝ genau dann, wenn x−y ∈ℤ.

Dann überprüft ihr alle Eigenschaften:

  • Sie ist reflexiv, denn (x,x) ∈ ℝ, da x−x = 0 ∈ ℤ,
  • symmetrisch, da aus (x,y) ∈ ℝ folgt x−y ∈ ℤ, also auch −(x−y) = y−x ∈ℤ und damit (y,x)∈ℝ,
  • transitiv, da (x,y)∈ℝ und (y,z)∈ℝ bedeuten, dass x−y ∈ℤ und y−z ∈ℤ, also auch (x−y)+(y−z) = x−z ∈ℤ, also (x,z)∈ℝ.

So jetzt wisst ihr, dass dies eine Äquivalenzrelation ist! Euer Leben ist nun um einiges reicher ;)

Blog


Berechnung der Inflation

Eine Anwendung der Mathematik, von der häufig in den Nachrichten die Rede ist, ist die Berechnung der Inflation. Als Inflation bezeichnet man den Wertverfall von Geld bzw. die Verteuerung von Preisen. Wie man diesen Preisanstieg berechnet und was es für Unterschiede bei der Berechnung gibt, erkläre ich euch in diesem Artikel. (Dies braucht ihr übrigens in den ersten Semestern bei Wirtschaftsstudiengängen z.B. bei BWL)

mehr lesen 0 Kommentare