Äquivalenzrelationen

Definition: Sei X eine Menge.

Eine Relation auf X ist eine Teilmenge R der Menge der Paare aus X, also eine Teilmenge von X×X.

Eine Relation R auf X heißt

  • reflexiv, falls (a,a)∈R für alle a∈ X,
  • symmetrisch, falls (a,b)∈R auch (b,a) ∈ R impliziert für alle a,b∈ X,
  • transitiv, falls (a,b) ∈ R und (b,c) ∈ R auch (a,c) ∈ R impliziert für alle a,b,c∈ X.

Eine reflexive, symmetrische und transitive Relation heißt ¨Äquivalenz"- oder "Ahnlichkeitsrelation".

 

Wenn ihr nun also überprüfen wollt (oder müsst), ob es eine Äquivalenzrelation ist, müsst ihr diese Eigenschaften überprüfen. Hier ein Beispiel, ihr müsst überprüfen ob dies eine Äquivalenzrelation ist:

 

(x,y) ∈ ℝ genau dann, wenn x−y ∈ℤ.

Dann überprüft ihr alle Eigenschaften:

  • Sie ist reflexiv, denn (x,x) ∈ ℝ, da x−x = 0 ∈ ℤ,
  • symmetrisch, da aus (x,y) ∈ ℝ folgt x−y ∈ ℤ, also auch −(x−y) = y−x ∈ℤ und damit (y,x)∈ℝ,
  • transitiv, da (x,y)∈ℝ und (y,z)∈ℝ bedeuten, dass x−y ∈ℤ und y−z ∈ℤ, also auch (x−y)+(y−z) = x−z ∈ℤ, also (x,z)∈ℝ.

So jetzt wisst ihr, dass dies eine Äquivalenzrelation ist! Euer Leben ist nun um einiges reicher ;)

Blog


Facebook-Gruppe als Unterrichtswerkzeug nutzen

Viele Schüler verbringen viel Zeit auf den sozialen Netzwerken, dies stört viele Lehrer und Eltern. Jedoch kann man dies als Lehrer auch ausnutzen. Durch das Erstellen einer eigenen Facebook-Gruppe, in welche alle Schüler beitreten, können Lehrer ganz neue Möglichkeiten nutzen. Hier erklären wir euch, wie ihr so eine Gruppe als Lehrer nutzen könnt und wie ihr eine Gruppe auf Facebook erstellt. Besonders in Zeiten von Corona ist dies eine Möglichkeit mit den Schülern im Kontakt zu bleiben und Fragen zu beantworten. 

mehr lesen 0 Kommentare