Äquivalenzrelationen

Definition: Sei X eine Menge.

Eine Relation auf X ist eine Teilmenge R der Menge der Paare aus X, also eine Teilmenge von X×X.

Eine Relation R auf X heißt

  • reflexiv, falls (a,a)∈R für alle a∈ X,
  • symmetrisch, falls (a,b)∈R auch (b,a) ∈ R impliziert für alle a,b∈ X,
  • transitiv, falls (a,b) ∈ R und (b,c) ∈ R auch (a,c) ∈ R impliziert für alle a,b,c∈ X.

Eine reflexive, symmetrische und transitive Relation heißt ¨Äquivalenz"- oder "Ahnlichkeitsrelation".

 

Wenn ihr nun also überprüfen wollt (oder müsst), ob es eine Äquivalenzrelation ist, müsst ihr diese Eigenschaften überprüfen. Hier ein Beispiel, ihr müsst überprüfen ob dies eine Äquivalenzrelation ist:

 

(x,y) ∈ ℝ genau dann, wenn x−y ∈ℤ.

Dann überprüft ihr alle Eigenschaften:

  • Sie ist reflexiv, denn (x,x) ∈ ℝ, da x−x = 0 ∈ ℤ,
  • symmetrisch, da aus (x,y) ∈ ℝ folgt x−y ∈ ℤ, also auch −(x−y) = y−x ∈ℤ und damit (y,x)∈ℝ,
  • transitiv, da (x,y)∈ℝ und (y,z)∈ℝ bedeuten, dass x−y ∈ℤ und y−z ∈ℤ, also auch (x−y)+(y−z) = x−z ∈ℤ, also (x,z)∈ℝ.

So jetzt wisst ihr, dass dies eine Äquivalenzrelation ist! Euer Leben ist nun um einiges reicher ;)

Blog


Spickzettel A6 - Die Lernkarten

Die neuen Spickzettel A6 by Studimup sind da! Das sind Lernkarten mit knackigen und einfachen Erklärungen im praktischen DIN A6 Format. Sie ermöglichen es einfach Mathe zu lernen und zu wiederholen, egal wo man ist, ob im Bus, der Bahn oder in der Sonne auf dem Balkon. In drei Varianten nach Klassenstufen unterteilt, findet jeder seine passenden Lernkarten:

Spickzettel A6 in drei Varianten
mehr lesen 0 Kommentare