Doppeldualraum

Um den Doppeldualraum zu verstehen solltet ihr wissen was Dualräume und duale Abbildungen sind, hier der Link zu dem Thema.

 

Sei V ein Vektorraum, V sein Dualraum und V∗∗ = (V) der Doppeldualraum von V, also der Dualraum des Dualraums von V.

 

Definition: Die Abbildung can: V → V∗∗, die einen Vektor v aus V auf die Linearform auf V abbildet, die ein φ∈V abbildet auf φ(v), nennt man die kanonische Abbildung. Kanonisch bedeutet soviel wie "offensichtlich" oder "naheligend". Man nennt sie so, da es einfach die Funktion zb f aus dem Dualraum nimmt und ein x einsetzt, also so wie ihr es aus der Schule kennt: f(x). 

Die kanonische Abbildung ist linear, wie man leicht nachrechnet.

Ist V endlich dimensional, so ist can: V →V∗∗ ein Isomorphismus.

 

Blog


Berechnung der Inflation

Eine Anwendung der Mathematik, von der häufig in den Nachrichten die Rede ist, ist die Berechnung der Inflation. Als Inflation bezeichnet man den Wertverfall von Geld bzw. die Verteuerung von Preisen. Wie man diesen Preisanstieg berechnet und was es für Unterschiede bei der Berechnung gibt, erkläre ich euch in diesem Artikel. (Dies braucht ihr übrigens in den ersten Semestern bei Wirtschaftsstudiengängen z.B. bei BWL)

mehr lesen 0 Kommentare

Taschenrechner Test und Vergleich

Es gibt viele verschiedene Taschenrechner, da ist es manchmal schwer zu entscheiden, welcher der richtige ist. Hier stellen wir euch einige Taschenrechner vor und vergleichen sie. Hier findet ihr eine Tabelle mit allen wichtigen Eigenschaften und Unterschieden im Vergleich. Ob ihr sie im Unterricht nutzen dürft, müsst ihr eure Lehrer fragen, da es sich je nach Bundesland unterscheidet.

mehr lesen 0 Kommentare