Quotientenvektorräume

Sei V ein K-Vektorraum und sei U ⊂ V ein K Untervektorraum. Wir definieren zunächst eine Äquivalenzrelation ∼ auf V: für x,y ∈ V setzen wir x ∼ y genau dann, wenn x−y in U enthalten ist.

Aus den Untervektorraumaxiomen folgt, dass ∼ sicherlich symmetrisch, reflexiv und transitiv ist, also eine Äquivalenzrelation. Mit [x] ⊂ V bezeichnen wir die Äquivalenzklasse von x. Sei V/U := V/ ∼ die Menge der Äquivalenzklassen von ∼ in V und sei can: V →V/U, can(x) = [x], die Abbildung, die jedem Element seine Äquivalenzklasse zuordnet.

 

Satz: Es gibt auf der Menge V/U genau eine Struktur eines K-Vektorraums, so dass die kanonische Abbildung

can: V →V/U x↦[x] ein Homomorphismus von K-Vektorräumen ist.

 

Das Paar (V/U,can) nennt man auch einen Quotienten von V nach U. Oftmals nennt man auch nur den Vektorraum V/U einen Quotienten von V nach U, aber dann denkt man sich immer implizit die kanonische Abbildung can hinzu.

 

Beweis: Es sei x ∼ x´ und y∼y´. Dann ist:

 

x + y∼ x´ + y´,

 

denn

 

x + y−(x´ + y´) = (x− x´) + (y−y´)

 

ist in U enthalten, da x− x´ und y−y´ in U enthalten sind.

Ist λ∈ K, so ist

 

λx∼λx´,

 

denn

 

λx−λx´ = λ(x−x´)

 

ist ebenfalls in U. Die Rechnungen im letzten Abschnitt zeigen, dass [x + y] und [λx] nur von den Äquivalenzklassen [x] und [y] von x und y abhängen, nicht aber von der Wahl der Vertreter. Also können wir eine Addition und eine skalare Multiplikation auf V/U definieren durch


[x] + [y] := [x + y], λ[x] := [λx].

Blog


Wie berechnet man die durchschnittlichen Kosten für ein Panini-Sammelalbum?

Viele Fußballfans sammeln leidenschaftlich Panini-Sticker zur WM 2018. Die wenigsten fragen sich jedoch, wie viel ein volles Album in etwa kostet und wie viele Sticker man kaufen muss, bis man jeden mindestens einmal hat. Studimup zeigt euch, wie viele Bildchen und Packungen ihr im Durchschnitt braucht, um ein vollständiges Sammelalbum zu haben und wie viel dieses dann ca. kostet. Natürlich zeigen wir euch auch, wie man das berechnet. 

mehr lesen 0 Kommentare