Gauß-Algorithmus

Dies ist ein recht einfaches Verfahren lineare Gleichungssysteme zu lösen. Ihr kennt dies bereits in gewisser weise aus der Schule als Additionsverfahren, Gleichsetztungsverfahren usw. Der Gauß-Algorithmus besteht darin, durch geschicktes Verketten der drei elementaren Umformungen aus einem Gleichungssystem ein anderes zu konstruieren, welches die selbe Lösungsmenge hat, aber in Zeilenstufenform gegeben ist, also einfach zu lösen ist.

 

Beispiel:

Wir betrachten das Gleichungssystem

 

X1 + 2X2 + 3X3 = 1

2X1 + 4X2 + 7X3 =4

4X1 + 2X2 = 0.

 

Nun multiplizieren wir die erste Gleichung mit −2 und addieren sie zur zweiten und erhalten das System

 

X1 + 2X2 + 3X3 = 1

X3 = 2

4X1 + 2X2 = 0.

 

Nun addieren wir das −4-fache der ersten Gleichung zur dritten und erhalten das System

 

X1 + 2X2 + 3X3 = 1

X3 = 2

−6X2 − 12X3 = −4.

 

Nun vertauschen wir noch die zweite mit der dritten Gleichung und erhalten ein System in Zeilenstufenform:

 

X1 + 2X2 + 3X3 = 1

−6X2 − 12X3 = −4

X3 = 2

 

Hier können wir die Lösung X3 = 2, X2 = −10/3 und X1 = 5/3 einfach ablesen.

 

Also geht es dabei nur darum, die Gleichung so umzuformen, dass die Gleichung dann in Zeilenstufenform steht. Es wird versucht ein Xi "los zu werden", solange bis die Gleichung dann in Zeilenstufenform steht.

Effiziente Schreibweise für Gleichungssysteme

Ein lineares Gleichungssystem ist gegeben durch die Koeffizienten aij und die bk’s, deshalb kann man es auch so schrieben, dass man nur jeden Faktor hin schreibt und was hinter dem = steht. Das sieht dann so aus:

So lässt sich der Gauß-Algorithmus leichter berechnen:

Die Lösung X3 = 11/3 , X2 = −3/5, X1 = −24/5 kann man fast direkt ablesen.

Blog


Wie berechnet man die durchschnittlichen Kosten für ein Panini-Sammelalbum?

Viele Fußballfans sammeln leidenschaftlich Panini-Sticker zur WM 2018. Die wenigsten fragen sich jedoch, wie viel ein volles Album in etwa kostet und wie viele Sticker man kaufen muss, bis man jeden mindestens einmal hat. Studimup zeigt euch, wie viele Bildchen und Packungen ihr im Durchschnitt braucht, um ein vollständiges Sammelalbum zu haben und wie viel dieses dann ca. kostet. Natürlich zeigen wir euch auch, wie man das berechnet. 

mehr lesen 0 Kommentare