Vektorräume

Definition: Ein Vektorraum über dem Körper K (auch ein K-Vektorraum genannt) ist eine abelsche Gruppe (V,+) zusammen mit einer skalaren Multiplikation. (also eine Zahl mal einen Vektor)

 

K×V →V

(λ,v) ↦ λv,

 

so dass folgende Eigenschaften erfüllt sind für alle λ,µ∈ K und v,w∈V:

 

λ(v + w) = (λv) + (λw),

(λ + µ)v = (λv) + (µv),

λ(µv) = (λµ)v,

1Kv = v.

 

Hier soll 1K das neutrale Element in K bzgl. der Multiplikation stehen. Ihr könnt es euch so Vorstellen, dass v Vektoren sind und die Elemente aus K einfach die Vorfaktoren mit denen die Vektoren gestreckt werden, sodass neue Vektoren bei rauskommen, so wie ihr das bereits aus der Schule kennt.

Der Vektorraum K^n

Ist n ∈ ℕ, so ist das n-fache Produkt Kn die Struktur eines K-Vektorraums: Die Vektoren sind also n-Tupel von Elementen aus K. Es ist üblich, diese n-Tupel in Spaltenform zu notieren, wie ihr das bereits aus der Schule kennt, es sind nämlich Vektoren:

Beides sind Vektoren im ℝ4. Also ein Kn Vektorraum ist einfach ein n Dimensionaler Raum, also sind auch die Vektoren mit n-Zeilen. Allgemein wird ein Vektor im K4 so notiert:

Das bedeutet also nichts anderes, als dass x1, x2, x3 und x4 irgendwelche Elemente in K sind. Ein allgemeiner Vektor im Kn ist dann:

Kn Addition wird definiert durch die Vorschrift:

Die skalare Multiplikation auf Kn wird definiert durch:

Blog


Wie berechnet man die durchschnittlichen Kosten für ein Panini-Sammelalbum?

Viele Fußballfans sammeln leidenschaftlich Panini-Sticker zur WM 2018. Die wenigsten fragen sich jedoch, wie viel ein volles Album in etwa kostet und wie viele Sticker man kaufen muss, bis man jeden mindestens einmal hat. Studimup zeigt euch, wie viele Bildchen und Packungen ihr im Durchschnitt braucht, um ein vollständiges Sammelalbum zu haben und wie viel dieses dann ca. kostet. Natürlich zeigen wir euch auch, wie man das berechnet. 

mehr lesen 0 Kommentare