Abbildungsräume

Sei M eine Menge und K ein Körper. Es wird nun gezeigt, dass die Menge Abb(M,K) aller Abbildungen von M nach K eine Natürliche Struktur als Vektorraum trägt.

Zunächst definieren wir die Addition. Für f,g ∈ Abb(M,K) wollen wir also f+g ∈Abb(M,K) definieren. Dazu setzen wir für alle m∈ M

 

(f + g)(m) = f(m) + g(m).

 

Dies ist wieder ein Element in K und wir erhalten eine Abbildung λf von M nach K. Mit diesen Verknüpfungen ist Abb(M,K) ein Vektorraum: Zunächst ist Abb(M,K) mit “+” eine abelsche Gruppe. Die Assoziativität ist klar, die Null ist die Abbildung 0Abb(M,K): M → K, die jedes Element auf 0K abbildet, und die zu f inverse Abbildung ist die Abbildung −f : M → K, die m abbildet auf −f(m). Die Vektorraumaxiome ergeben sich unmittelbar daraus, dass sie für das Ziel unserer Abbildungen, also den Körper K gelten.

Blog


Hilfe bei Matheproblemen - die fb Gruppe

Es gibt nun eine Facebook-Gruppe von Studimup, auf welcher ihr Hilfe bei Matheproblemen bekommt. Dies funktioniert so:

  1. Ihr stellt eure Frage als Post in die Gruppe.
  2. Wenn jemand die Antwort weiß, kann er sie in den Kommentaren beantworten. 

Wenn ihr also mal Schwierigkeiten bei einer bestimmten Aufgabe oder einem Thema habt, dann könnt ihr eure Frage in die Gruppe posten. Ebenso könnt ihr anderen Personen bei ihren Problemen helfen und so selbst das Thema üben und vertiefen. Mit der Gruppe soll es möglich sein, möglichst schnell antworten auf ein Problem zu bekommen (z.B. bei einer Hausaufgabe). Je mehr Leute mitmachen, desto besser funktioniert dieses System. 

mehr lesen 0 Kommentare

Tipps gegen Prüfungsangst

Viele kennen das, vor einer Prüfung geht die Angst rum, man wird unruhig und es geht einem nicht gut. Die Prüfungsangst schlägt zu. Wir möchten euch paar Tipps geben diese Angst etwas zu verringern und bessere Ergebnisse zu erzielen. 

mehr lesen 0 Kommentare