Der Spann

Sei V ein Vektorraum und X ⊂ V eine Teilmenge. Nun gibt es sicherlich Untervektorräume U von V, die X enthalten. Wenn wir nun den Durchschnitt aller Unterräume bilden, die X enthalten, so erhalten wir wieder einen Unterraum. Dieser Unterraum muss natürlich ebenfalls X enthalten. Er ist somit der kleinste Unterraum von V, der X enthält. Deswegen trägt er einen speziellen Namen, nämlich Spann.

 

Definition: Sei X ⊂ V eine Teilmenge. Der Spann von X (oder der von X aufgespannte Teilraum oder der von X erzeugte Teilraum) ist der Durchschnitt aller Untervektorräume von V, die X enthalten. Er wird mit ⟨X⟩ bezeichnet. Es ist also:

Also ist der Spann:

 

⟨X⟩ = {v∈V | v ist eine Linearkombination von Vektoren aus X}.

 

Somit ist der Spann nichts anderes als eine Basis des Vektorraums.

Blog


Spickzettel A6 - Die Lernkarten

Die neuen Spickzettel A6 by Studimup sind da! Das sind Lernkarten mit knackigen und einfachen Erklärungen im praktischen DIN A6 Format. Sie ermöglichen es einfach Mathe zu lernen und zu wiederholen, egal wo man ist, ob im Bus, der Bahn oder in der Sonne auf dem Balkon. In drei Varianten nach Klassenstufen unterteilt, findet jeder seine passenden Lernkarten:

Spickzettel A6 in drei Varianten
mehr lesen 0 Kommentare