Erzeugendensysteme

Nun die frage, wann man jeden Vektor V aus einer Linerarkombination von fest gewählten Vektoren erhalten kann. Dies nennt man dann Erzeugendensystem. Wenn ihr also eine Menge von Vektoren habt, zum Beispiel alle 2 Dimensionalen Vektoren, dann sind ein par Vektoren ein Erzeugendensystem, wenn sich aus diesen Vektoren alle anderen in einer Linearkombination zusammenbasteln lassen. 

 

Eigenschaften:

  • Ihr könnt jeden Vektor der Menge aus einigen Vektoren mit einer Linerarkombination zusammenbauen? -> dann sind diese Vektoren das Erzeugendensystem zu dieser Menge.
  • Das Erzeugendensystem ist eine Teilmenge der Menge

 

Definition:

Sei V ein K-Vektorraum. Eine Teilmenge E von V heißt Erzeugendensystem von V, falls jedes Element aus V eine Linearkombination von endlich vielen Elementen aus E ist. Das heißt man kann jeden Vektor aus V mit einer Linearkombination aus E "zusammenbasteln". Also ist E eine Teilmenge von V.

E ⊂ V ist ein Erzeugendensystem, wenn sich zu jedem beliebigen v aus V Elemente

v1,...,vn aus E und Skalare λ1, ..., λn in K finden lassen, so dass v = λ1v1 +···+ λnvn gilt.

Beispiel

Dies ist ein Erzeugendensystem des ℝ^3 Vektorraums, da sich mit diesen Vektoren jeder Vektor dieses Vektorraums "zusammenbauen" lässt:

Blog


Wie berechnet man die durchschnittlichen Kosten für ein Panini-Sammelalbum?

Viele Fußballfans sammeln leidenschaftlich Panini-Sticker zur WM 2018. Die wenigsten fragen sich jedoch, wie viel ein volles Album in etwa kostet und wie viele Sticker man kaufen muss, bis man jeden mindestens einmal hat. Studimup zeigt euch, wie viele Bildchen und Packungen ihr im Durchschnitt braucht, um ein vollständiges Sammelalbum zu haben und wie viel dieses dann ca. kostet. Natürlich zeigen wir euch auch, wie man das berechnet. 

mehr lesen 0 Kommentare