Linearkombinationen

Eine Linearkombination von Vektoren bedeutet einfach, dass Vektoren miteinander addiert werden, allerdings wird jeder Vektor auch mit einer Zahl (dem sogenannten Skalar) multipliziert. So lassen sich dann neue Vektoren aus den anderen "zusammenbasteln".

Mathematische Definition

Sei V ein K-Vektorraum und seien v1, ..., vn Vektoren aus V. Man untersucht nun, welche Vektoren aus V man als Summen von Vielfachen der vi erhalten kann.

 

Definition: Eine Linearkombination von v1, ..., vn ist ein Vektor w aus V der Form:

 

w = λ1v1 +···+ λnvn

  

für eine Wahl von Skalaren λi aus K (sind einfach Zahlen aus K, die an den Vektor multipliziert werden). So lassen sich aus Vektoren neue Vektoren "zusammenbasteln".

 

Bemerkung:

Der Nullvektor lässt sich aus allen beliebigen Vektoren erstellen, indem man für alle Skalare die 0 einsetzt:

 

0V = 0Kv1 +···+ 0Kvn

Beispiel

Blog


Facebook-Gruppe als Unterrichtswerkzeug nutzen

Viele Schüler verbringen viel Zeit auf den sozialen Netzwerken, dies stört viele Lehrer und Eltern. Jedoch kann man dies als Lehrer auch ausnutzen. Durch das Erstellen einer eigenen Facebook-Gruppe, in welche alle Schüler beitreten, können Lehrer ganz neue Möglichkeiten nutzen. Hier erklären wir euch, wie ihr so eine Gruppe als Lehrer nutzen könnt und wie ihr eine Gruppe auf Facebook erstellt. Besonders in Zeiten von Corona ist dies eine Möglichkeit mit den Schülern im Kontakt zu bleiben und Fragen zu beantworten. 

mehr lesen 0 Kommentare