Linearkombinationen

Eine Linearkombination von Vektoren bedeutet einfach, dass Vektoren miteinander addiert werden, allerdings wird jeder Vektor auch mit einer Zahl (dem sogenannten Skalar) multipliziert. So lassen sich dann neue Vektoren aus den anderen "zusammenbasteln".

Mathematische Definition

Sei V ein K-Vektorraum und seien v1, ..., vn Vektoren aus V. Man untersucht nun, welche Vektoren aus V man als Summen von Vielfachen der vi erhalten kann.

 

Definition: Eine Linearkombination von v1, ..., vn ist ein Vektor w aus V der Form:

 

w = λ1v1 +···+ λnvn

  

für eine Wahl von Skalaren λi aus K (sind einfach Zahlen aus K, die an den Vektor multipliziert werden). So lassen sich aus Vektoren neue Vektoren "zusammenbasteln".

 

Bemerkung:

Der Nullvektor lässt sich aus allen beliebigen Vektoren erstellen, indem man für alle Skalare die 0 einsetzt:

 

0V = 0Kv1 +···+ 0Kvn

Beispiel

Blog


Wie berechnet man die durchschnittlichen Kosten für ein Panini-Sammelalbum?

Viele Fußballfans sammeln leidenschaftlich Panini-Sticker zur WM 2018. Die wenigsten fragen sich jedoch, wie viel ein volles Album in etwa kostet und wie viele Sticker man kaufen muss, bis man jeden mindestens einmal hat. Studimup zeigt euch, wie viele Bildchen und Packungen ihr im Durchschnitt braucht, um ein vollständiges Sammelalbum zu haben und wie viel dieses dann ca. kostet. Natürlich zeigen wir euch auch, wie man das berechnet. 

mehr lesen 0 Kommentare