Linearkombinationen

Eine Linearkombination von Vektoren bedeutet einfach, dass Vektoren miteinander addiert werden, allerdings wird jeder Vektor auch mit einer Zahl (dem sogenannten Skalar) multipliziert. So lassen sich dann neue Vektoren aus den anderen "zusammenbasteln".

Mathematische Definition

Sei V ein K-Vektorraum und seien v1, ..., vn Vektoren aus V. Man untersucht nun, welche Vektoren aus V man als Summen von Vielfachen der vi erhalten kann.

 

Definition: Eine Linearkombination von v1, ..., vn ist ein Vektor w aus V der Form:

 

w = λ1v1 +···+ λnvn

  

für eine Wahl von Skalaren λi aus K (sind einfach Zahlen aus K, die an den Vektor multipliziert werden). So lassen sich aus Vektoren neue Vektoren "zusammenbasteln".

 

Bemerkung:

Der Nullvektor lässt sich aus allen beliebigen Vektoren erstellen, indem man für alle Skalare die 0 einsetzt:

 

0V = 0Kv1 +···+ 0Kvn

Beispiel

Empfohlenes Video zur geometrischen Vorstellung:

Blog


Abistreich Ideen

Wenn ihr jetzt euer Abi schreibt, bedeutet es, dass die Zeit auf der Schule für euch bald vorbei ist. Jedoch könnt ihr euch noch ordentlich von der Schule verabschieden, nämlich mit dem Abistreich! Dazu findet ihr hier einige Ideen und Infos, auf was ihr achten müsst, damit es ein gelungener Abschluss wird.

mehr lesen 0 Kommentare